3-D computational modeling of media flow through scaffolds in a perfusion bioreactor.

نویسندگان

  • Blaise Porter
  • Roger Zauel
  • Harlan Stockman
  • Robert Guldberg
  • David Fyhrie
چکیده

Media perfusion bioreactor systems have been developed to improve mass transport throughout three-dimensional (3-D) tissue-engineered constructs cultured in vitro. In addition to enhancing the exchange of nutrients and wastes, these systems simultaneously deliver flow-mediated shear stresses to cells seeded within the constructs. Local shear stresses are a function of media flow rate and dynamic viscosity, bioreactor configuration, and porous scaffold microarchitecture. We have used the Lattice-Boltzmann method to simulate the flow conditions within perfused cell-seeded cylindrical scaffolds. Microcomputed tomography imaging was used to define the scaffold microarchitecture for the simulations, which produce a 3-D fluid velocity field throughout the scaffold porosity. Shear stresses were estimated at various media flow rates by multiplying the symmetric part of the gradient of the velocity field by the dynamic viscosity of the cell culture media. The shear stress algorithm was validated by modeling flow between infinite parallel plates and comparing the calculated shear stress distribution to the analytical solution. Relating the simulation results to perfusion experiments, an average surface shear stress of 5x10(-5)Pa was found to correspond to increased cell proliferation, while higher shear stresses were associated with upregulation of bone marker genes. This modeling approach can be used to compare results obtained for different perfusion bioreactor systems or different scaffold microarchitectures and may allow specific shear stresses to be determined that optimize the amount, type, or distribution of in vitro tissue growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteogenic Differentiation and Mineralization on Compact Multilayer nHA-PCL Electrospun Scaffolds in a Perfusion Bioreactor

Background: Monolayer electrospun scaffolds have already been used in bone tissue engineering due to their high surface-to-volume ratio, interconnectivity, similarity to natural bone extracellular matrix (ECM), and simple production. Objectives: The aim of this study was to evaluate the dynamic culture effect on osteogenic differentiation and mineralizationi into a compact cellular multilayer ...

متن کامل

Modeling of the Flow within Scaffolds in Perfusion Bioreactors

Tissue engineering aims to produce artificial organs and tissues for transplant treatments, in which cultivating cells on scaffolds in bioreactors is of critical importance. To control the cultivating process, the knowledge of the fluid flow inside and around a scaffold in the bioreactor is essential. However, due to the complicated microstructure of a scaffold, it is difficult, or even impossi...

متن کامل

Three-Dimensional Modelling inside a Differential Pressure Laminar Flow Bioreactor Filled with Porous Media

A three-dimensional computational fluid dynamics- (CFD-) model based on a differential pressure laminar flow bioreactor prototype was developed to further examine performance under changing culture conditions. Cell growth inside scaffolds was simulated by decreasing intrinsic permeability values and led to pressure build-up in the upper culture chamber. Pressure release by an integrated bypass ...

متن کامل

Hydrodynamic 3D Culture for Bone Tissue Engineering

Bone tissue engineering provided a promising approach for treatment of large bone defects resulting from maladies such as birth defects, trauma, or tumor resection. In vitro culture of a porous scaffold seeded with osteoprogenitor cells may enhance its bone regeneration potential. In this chapter, we describe the design of a novel perfusion bioreactor system with oscillatory flow for cultivatin...

متن کامل

A Novel Flow-Perfusion Bioreactor Supports 3D Dynamic Cell Culture

BACKGROUND Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm). A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm) scaffolds. METHODS Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2005